Previous page XQML
1. Introduction
2. XQML code :
2.1 cross :
- Matrices {$S$} and {$ \displaystyle \frac{d S}{d C_b} $} are computed at the same time.
- Define matrix {$ \displaystyle P_b = \frac{d S}{d C_b}$}
- Diagonal pixel covariance matrix, with {$ V_A = $} pixel noise variance for map A. Same for map B :
- {$ C^{AB} = S $},
- {$ C^{AA} = S + \mathbb 1 \cdot V_A $},
- {$ C^{BB} = S + \mathbb 1 \cdot V_B $}.
- Compute {$ {C^{AA}}^{-1} $} and {$ {C^{BB}}^{-1} $}
- Compute {$ E_b^{AB} = {C^{AA}}^{-1} P_b {{C^{BB}}}^{-1} $}
- Compute {$ \displaystyle F_{bb'}^{AB} = Tr_{pix}[ {C^{AA}}^{-1} P_b {{C^{BB}}}^{-1} P_{b'} ] = \sum_{allpix~ij} (E_b^{ij} P_{b'}^{ij} ) $} (term-by-term matrix product from trace property).
- Compute {$ {F_{bb'}^{AB}}^{-1} $}
- Compute {$ C^{AB}\cdot E_b $} then {$ G_{bb'}^{AB} = \sum_{allpix~ij} (C^{AB}\cdot E_b)^{ij} ( C^{AB} E_{b'})^{ij} $}
2.2 auto :
- Matrices {$S$} and {$ \displaystyle \frac{d S}{d C_b} $} are computed at the same time.
- {$S$} is now computed from {$\ell = 2$} to {$ ell=lmax$}, whatever the binning.
- Define matrix {$ \displaystyle P_b = \frac{d S}{d C_b}$}
- Diagonal pixel covariance matrix, with {$ V_A = $} pixel noise variance for map A. Same for map B :
- {$ C^{auto} = S + \mathbb 1 \cdot V_A $},
- Compute {$ {C^{auto}}^{-1} $}
- Compute {$ E_b^{auto} = {C^{auto}}^{-1} P_b {{C^{auto}}}^{-1} $}
- Compute {$ \displaystyle F_{bb'}^{auto} = Tr_{pix}[ {C^{auto}}^{-1} P_b {{C^{auto}}}^{-1} P_{b'} ] = \sum_{allpix~ij} (E_b^{ij} P_{b'}^{ij} ) $} (term-by-term matrix product from trace property).
- Compute {$ {F_{bb'}^{auto}}^{-1} $}
3. Simulation pipeline :
- Get pre-saved {$S$} and {$ \displaystyle \frac{d S}{d C_b} $} matrices computed for defined set of parameters :
- patch (bicep or litebird like),
- fwhm (beam),
- nside,
- mask (fksy),
- Clth (fiducial spectrum model),
- first {$\ell$},
- bin size {$\Delta \ell $},
- pixwin (yes/no)
- Compute useful matrices for xqml (description above).
- Compute 1000 simulations as follow :
- Noise maps :
- Map noise auto : {$ N = \mathcal N (0, \sqrt {V_A}) $}
- Map noise A : {$ N_A = \mathcal N (0, \sqrt {2V_A}) $}
- Map noise B : {$ N_B = \mathcal N (0, \sqrt {2V_B}) $}
- Map CMB : synfast(Clth, fwhm=fwhmrad, pixwin=True)
- Maps :
- Map d : {$d = CMB + N$},
- Map A : {$d_A = CMB + N_A$},
- Map B : {$d_B = CMB + N_B $}
- cross xqml :
- cross pre-estimator {$ \hat y_b = d_A E_b d_B $}
- cross estimator {$ \hat C_b = {F_{bb'}^{AB}}^{-1} \cdot \hat y_{b'} $}
- auto xqml :
- auto pre-estimator {$ \hat y_b = d E_b d $}
- spectrum bias term : {$ \hat B_{b} = Tr_{pix} [N \cdot E_b ] = \sum_{allpix~ij} (N^{ij} E_{b}^{ij}) $}
- auto estimator {$ \hat C_b = {F_{bb'}^{AB}}^{-1} \cdot (\hat y_{b'} - \hat B_{b} ) $}
- Evaluates analytic error : {$ Cov(C_b, C_{b'}) = {F_{bb_1}^{AB}}^{-1} G_{b_1b_2}^{AB} {F_{b_2b'}^{AB}}^{-1} + {F_{bb'}^{AB}}^{-1}$}
- Compute MC spectra means and variances, then compare to the model and the analytic variance.
3.1 Bicep patch Inverse noise variance :
My version (wrong)
Let {$w$} be the apodization weighing mask map of bicep ( {$ [0,..,1] \in w $} ). We want to build a noise map with variance inversely proportional to the weighing map.
If we choose the weighed mean variance per pixel of the map to be {$\sigma^2 [\mu K\cdot arcmin]$} , and {$V_i$} the variance of pixel {$i$}, then we have {$ \displaystyle \sigma = \frac{\sum_i V_i w_i}{\sum_i w_i} $}. Since we want to weight the variance for each pixel, we take {$V_i = \alpha \sigma^2 w_i^{-1}$} with {$\alpha$} the normalisation factor that assures the mean variance of the map {$V$} to be {$\sigma^2$}. Thus, {$ \displaystyle \sigma^2 = \frac{\sum_i \sigma \alpha}{\sum w_i} = \frac{n_{pix} \sigma^2 \alpha}{\sum w_i} $}, which gives {$ \displaystyle \alpha = \frac{\sum_i w_i}{n_{pix}} $}, and the final variance per pixel read : {$\displaystyle V_i = \frac{\sigma^2}{ w_i} \frac{\sum_j w_j}{n_{pix}} $}
Matt's version :
We demand the total variance of the map to be {$ \displaystyle \frac{\sigma^2}{n_{pix}} [\mu K\cdot arcmin] = \frac 1 {\sum_i 1/ V_i} $} which is equal to {$\displaystyle \frac{\sigma^2}{n_{pix}}$} if {$ V_i = \sigma^2 $} (white noise case). Now we demand a weighting of the variance such that {$ V_i = \beta w_i^{-1} $} with {$ \beta $} the normalisation factor. Injecting {$ V_i$} gives {$ \beta = \displaystyle \frac{\sigma^2}{n_{pix}} \sum_i w_i $} ad finally {$\displaystyle V_i = \frac{\sigma^2}{ w_i} \frac{\sum_j w_j}{n_{pix}} $}.
4. Simulations variance en fits results :
- Compute std for two patches : Full and small (litebird and bicep like).
- Xqml spectra estimators are computed for 1000 simulation. Theoretical std is compared to MC std.
- Upper plot corresponds to the mean of the 1000 xqml simulations spectrum estimation (blue dot) compared to {$C_\ell$} model (dashed black).
- Down plot are standard deviations (error bars) compared to Fisher error (dasher red) and {$C_\ell$} model (dashed black).
- The cross Fisher variance estimate follows :
{$ \displaystyle Cov( C^{AB}_\ell, C^{AB}_{\ell} ) = \frac{1}{ f_{sky} (2 \ell+1) \Delta \ell} \left[ C_\ell^{AA} C_\ell^{BB} + C_\ell^{AB}C_\ell^{BA} \right] $}
{$ \displaystyle Cov( C^{AB}_\ell, C^{AB}_{\ell} ) = \frac{1}{ f_{sky} (2 \ell+1) \Delta \ell} \left[ 2 C_\ell^2 + C_\ell ( N_\ell^A + N_\ell^B )b_\ell^{-2} + N_\ell^A N_\ell^B b_\ell^{-4} \right] $}
where {$ \displaystyle f_{sky} = \frac 1{n_{pix}} \frac{(\sum_i W_i^2)^2}{\sum_i W_i^4} $} (from MASTER paper)
- While the auto- Fisher variance estimate follows :
{$ \displaystyle Cov( C^{A=B}_\ell, C^{A=B}_{\ell} ) = \frac{1}{ f_{sky} (2 \ell+1) \Delta \ell} \left[ C_\ell^{AA} C_\ell^{BB} + C_\ell^{AB}C_\ell^{BA} \right] $}
{$ \displaystyle Cov( C^{A=B}_\ell, C^{A=B}_{\ell} ) = \frac{1}{ f_{sky} (2 \ell+1) \Delta \ell} \times 2 \times \left[ C_\ell + N_\ell^A b_\ell^{-2} \right]^2 $}
- Right tab describes simulation inputs :
- Patch and nside. (BICEPivw means that I used inverse variance weighting (ivw) for noise maps. Otherwise, "BICEP" alone means that I used white noise.).
- 1bins40 means that the minimum {$\ell$} taken in the binning starts at {$ \ell = 40 $}
- pixwin (1 = True, always the case in simulations so far)
- fwhmdeg (beam in degrees, always used 0.5 deg in simulations so far)
- wiEE corresponds to {$ C_\ell^{EE} \neq 0$}. While noEE is the opposite ({$ C_\ell^{EE} = 0$}).
- r0.1 corresponds to r=0.1 (always used r=0.1 case in simulation so far).
- fsky
- noise {$\sigma = 0.1 $} {$ [\mu K\cdot arcmin ] $}, gives the following variance noise per pixel : {$ \displaystyle \sigma_{pix}^2 = \frac{\sigma^2 \cdot 10^{-12} }{60^2 \cdot PixelArea [deg]} $}
- mean value of {$N_\ell $} is boxed in magenta, and {$ \ell (\ell+1)/2/\pi N_\ell $} is plotted in magenta.
- yellow triangles are Xpol fits and variance.
4.1 Bicep patch, Nside 128 :
no ponderation (white noise)
4.2 Bicep patch, Nside 128 :
- Avec ponderation du bruit par pixel !
fwhm=0.5deg | {$ C_\ell^{EE} \neq 0$} | {$ C_\ell^{EE} = 0$} |
fwhm=0.5deg, {$\sigma=0.1 \mu Karcm$} | | |
fwhm=0.5deg, {$\sigma=1.0 \mu Karcm$} | | |
fwhm=0.5deg, {$\sigma=5.0 \mu Karcm$} | | |
4.3 Litebird patch, Nside 16 :
fwhm=1.0deg | {$ C_\ell^{EE} \neq 0$} | {$ C_\ell^{EE} = 0$} |
fwhm=1.0deg, {$\sigma=0.1 \mu Karcm$} | | |
fwhm=1.0deg, {$\sigma=1.0 \mu Karcm$} | | |
fwhm=1.0deg, {$\sigma=5.0 \mu Karcm$} | | |
5. Error in pixel covariance matrix :
5.1 Estimation and variance :
We change {$C = S + N$} by {$C = S + p \cdot N$} with {$p = [0.5, 1.0, 2.0.]$}
- Note : Le biais en auto sur Bicep pondéré est dû à une erreur dans mes jobs : Je lui donne une matrice de bruit diagonale constante pour débiaiser l'estimateur, alors que dans ce cas la diagonale n'est justement pas constante. C'est en cours de correction.
Bicep (ponderé)
cross :
fwhm=0.5deg | {$ C_\ell^{EE} \neq 0$} | {$ C_\ell^{EE} = 0$} |
{$\sigma=1.0 \mu Karcm$} | | |
{$\sigma=5.0 \mu Karcm$} | | |
auto :
fwhm=0.5deg | {$ C_\ell^{EE} \neq 0$} | {$ C_\ell^{EE} = 0$} |
{$\sigma=1.0 \mu Karcm$} | | |
{$\sigma=5.0 \mu Karcm$} | | |
Litebird :
Cross :
fwhm=0.5deg | {$ C_\ell^{EE} \neq 0$} | {$ C_\ell^{EE} = 0$} |
{$\sigma=1.0 \mu Karcm$} | | |
{$\sigma=5.0 \mu Karcm$} | | |
Auto :
fwhm=0.5deg | {$ C_\ell^{EE} \neq 0$} | {$ C_\ell^{EE} = 0$} |
{$\sigma=1.0 \mu Karcm$} | | |
{$\sigma=5.0 \mu Karcm$} | | |
5.2 Ratio of variance
Again, we change {$C = S + N$} by {$C = S + p \cdot N$} with {$p = [0.5, 1.0, 2.0.]$}, and plot the ratio {$\displaystyle R(p) = \sqrt{ \frac{VarCl (C = S + p \cdot N)}{VarCl (C = S + N)} } $} of the MC standard deviations. Note that for each value of {$p$}, the 1000 cmb + noise simulations are the same.
Bicep (ponderé)
Cross and auto :
fwhm=0.5deg | {$ C_\ell^{EE} \neq 0$} | {$ C_\ell^{EE} = 0$} |
{$\sigma=1.0 \mu Karcm$} | | |
{$\sigma=5.0 \mu Karcm$} | | |
Litebird :
Cross and auto :
fwhm=0.5deg | {$ C_\ell^{EE} \neq 0$} | {$ C_\ell^{EE} = 0$} |
{$\sigma=1.0 \mu Karcm$} | | |
{$\sigma=5.0 \mu Karcm$} | | |
6. Other :
- My to do list :
- Test and compare Pure B-mode