|
1. Surveys
1.1 Surveys results :
- /!\ fsky=0.5 ! => more leakage, and more cosmic variance compared to the fsky=0.7 case.
- first panel : estimator vs model
- second panel : residues (1000 simulations)
- third panel : spectrum error
LiB | BIC |
| |
1.2 Correlations matrices :
- FULL (LiB) , Ns4,
- 46 vs 62 bins,
- SlmaxA = 3*ns-1 VS SlmaxB = 4*ns-1
- fwhmdegA=0.5 VS fwhmdegB=4.0 deg
fsky0.5 | |
1.3 Survey eigenvalues :
- Left : LiteBird, nside=16, fsky=0.7, svd(S) blue, svd(S+N) green at 0.1 muK
- Right : BICEP, nside=128, svd(S) blue, svd(S+N) green at 0.1 muK
- v3 or v4 are the eigenvalues of S (lmax = 3nside-1 or 4nside-1)
- vC3 or vC4 are the eigenvalues of C (lmax = 3nside-1 or 4nside-1)
Smoothing effect :
- axis label are inverted (x axis = fwhm [deg])
Comparison smoothing vs lmax :
- Smoothing allow to neglect the change on diag S. As a consequence, it also impact the inversibility that procure the addition of new modes in the construction of the signal matrix.
- nex step : compute the impact on the spectrum variance !
2. Small nside tests
2.1 Monte_carlo VS analitical signal matrix construction
nside= 4, flat spectrum fiducial model
- 100000 simulations
- flat cl = 1.0
| Slmax = 3*ns-1 | Slmax = 4*ns-1 | Slmax = 5*ns-1 | Slmax = 10*ns-1 |
fwhm = 0.5 + pixwin | | | | |
fwhm = 0.0 + no pixwin | | | | |
- observations :
- for a flat spectrum, the analytical pixel covariance matrix correspond exactly to the monte-carlo generated one.
- this is valid even for lmax > 4*nside !?
nside= 4, planck model spectrum fiducial model
- 100000 simulations
- planck model cl
| Slmax = 3*ns-1 | Slmax = 4*ns-1 | Slmax = 5*ns-1 | Slmax = 10*ns-1 |
spectra | | | | |
fwhm = 0.5 + pixwin | | | | |
- observations :
- for a flat spectrum, the analytical pixel covariance matrix correspond exactly to the monte-carlo generated one.
- this is valid even for lmax > 4*nside !?
- Mainly the level of the diagonal is slightly impacted by the S lmax. The other features from the matrix remain constant.
| anaytica | mc |
S eigen values | | |
- observations :
- condition number improve from lmax = 3ns to 4ns. Less improvement for higher lmax. As already shown (other plots downstair) .
nside= 8 eigen values
S ana eigen values | |
- observations :
- condition number decrease with resolution (nside).
- but noise level increases, thus improving the condition number of C = S + N
2.2 spectra + var ns=4 :
- markers are the spectra estimation
- solid line = analytical (fisher) spectrum error
- solid line low opacity = mc spectrum error
| fwhm=15.0 deg | fwhm=0.5 deg |
Nbins=10, Slmax=3*ns-1, lmax simu = 3ns-1 | | |
Nbins=10, Slmax=4*ns-1, lmax simu = 4ns-1 | | |
Nbins=10, Slmax=4*ns-1, lmax simu = 3ns-1 | | |
Nbins=14, Slmax=4*ns-1, lmax simu = 4ns-1 | | |
Nbins=14, Slmax=4*ns-1, lmax simu = 3ns-1 | | |
- Pushing lmax simulation to 4ns seems to bias the spectrum
- Pushing lmax in the signal covariance amtrix S seems to boost the variance at high multipole
New Correlations matrices :
- FULL (LiB) , Ns4,
- 10 vs 14 bins,
- SlmaxA = 3*ns-1 VS SlmaxB = 4*ns-1
- fwhmdegA=0.5 VS fwhmdegB=15.0 deg
fsky0.8 | |
fsky1.0 | |
Old Correlations matrices :
- FULL (LiB) , Ns4, Nbins14, Slmx=4ns-1, fwhmdeg=15.0, r=0.001, fsky0.8
2.3 Condition number Signal Matrix :
2.4 range tests
Condition number versus lmax.
- Colors are map beams change (fhwm = [0.5, 1.0, 2.0, 3.0] deg ). We see that there is little variation of the condition number when changing the beam.
- Condition number is mainly impacted by the fksy and lmax value.
2.5 Symetric matrix ?
Nside = 8, fsky=0.7, 0.1 muK
- note : WAB = FAB (fisher matrix)
sym ElAB at l=0 ? | False |
sym ElAB at l=1 ? | False |
sym ElAB at l=2 ? | False |
sym ElAB at l=3 ? | False |
sym ElAB at l=4 ? | True |
sym ElAB at l=5 ? | True |
sym ElAB at l=6 ? | True |
sym ElAB at l=7 ? | True |
sym ElAB at l=8 ? | True |
sym ElAB at l=9 ? | True |
sym ElAB at l=10 ? | True |
sym ElAB at l=11 ? | True |
sym ElAB at l=12 ? | True |
sym ElAB at l=13 ? | True |
sym ElAB at l=14 ? | True |
sym ElAB at l=15 ? | True |
sym ElAB at l=16 ? | True |
sym ElAB at l=17 ? | True |
sym ElAB at l=18 ? | True |
sym ElAB at l=19 ? | True |
sym ElAB at l=20 ? | True |
sym ElAB at l=21 ? | True |
sym ElAB at l=22 ? | True |
sym ElAB at l=23 ? | True |
sym ElAB at l=24 ? | True |
sym ElAB at l=25 ? | True |
sym ElAB at l=26 ? | True |
sym ElAB at l=27 ? | True |
sym ElAB at l=28 ? | True |
sym ElAB at l=29 ? | True |
sym ElAB at l=30 ? | False |
sym ElAB at l=31 ? | True |
sym ElAB at l=32 ? | True |
sym ElAB at l=33 ? | True |
sym ElAB at l=34 ? | True |
sym ElAB at l=35 ? | True |
sym ElAB at l=36 ? | True |
sym ElAB at l=37 ? | True |
sym ElAB at l=38 ? | True |
sym ElAB at l=39 ? | True |
sym ElAB at l=40 ? | True |
sym ElAB at l=41 ? | True |
sym ElAB at l=42 ? | True |
sym ElAB at l=43 ? | True |
sym ElAB at l=44 ? | True |
sym ElAB at l=45 ? | True |
sym ElAB at l=46 ? | True |
sym ElAB at l=47 ? | True |
sym ElAB at l=48 ? | True |
sym ElAB at l=49 ? | True |
sym ElAB at l=50 ? | True |
sym ElAB at l=51 ? | True |
sym ElAB at l=52 ? | True |
sym ElAB at l=53 ? | True |
sym ElAB at l=54 ? | True |
sym ElAB at l=55 ? | True |
sym ElAB at l=56 ? | True |
sym ElAB at l=57 ? | True |
sym ElAB at l=58 ? | True |
sym ElAB at l=59 ? | True |
sym CAA ? | True |
sym invCAA ? | True |
sym WABb ? | True |
sym invWAB ? | True |
sym GABb ? | True |
|
|