1. white noise
2. ffp10 noise
3. ffp10 noise + residual masking
Clfsky0.7_Rfsky0.6 | |
Clfsky0.7_Rfsky0.7 | |
Clfsky0.8_Rfsky0.6 | |
Clfsky0.8_Rfsky0.7 | |
Clfsky0.9_Rfsky0.5 | |
Clfsky0.9_Rfsky0.6 | |
Clfsky0.9_Rfsky0.7 | |
4. test no fg :
4.1 last results simus + tests
4.2 Results :
5. planck data
xVll cov
6. simulations
end-to-end simulations
Clfsky = 0.5
white noise
xVll cov
MC cov
ffp10 noise
Clfsky = 0.8
white noise
ffp10 noise
7. tests
Fixed fixed coeff alpha
with fg residuals
7.1 Old results on Simulations (no more actual)
8. fsky=0.5
dust mask | residual mask |
| |
9. fsky=0.7
dust mask | residual mask |
| |
9.1 preliminary tests
- nside=16
- cosine beam
- fsky = 0.5
10. masks :
- dust mask : based on PySM dust template at 353. A cut is applied on the power of the signal
- residuals mask : cut for which the pixel have the largest residuals power :
{$ m = (1- \alpha_D - \alpha_S)^{-1} \cdot (\delta_D f_{353} + \delta_S f_{30} + \bar n_d + \alpha_D < n_D > + \alpha_S < n_S > $}
{$ v = (1- \alpha_D - \alpha_S)^{-2} \cdot (\sigma^2 (n_D) + \alpha_D^2 \sigma^2 (n_D) + \alpha_S^2 \sigma^2 (n_S) $}
{$ R = m / \sqrt(v / 300) $}
{$ \sqrt{R_Q^2 + R_U^2} $} is the map of the power of the residuals. A cute is applied on the sky based on the amplitude of the pixel of this map.
dust mask | residual mask |
| |
11. white noise :
noise :
no noise :
12. ffp10 noise :
dust mask :
residual mask :
13. beam cosine test :
l2 = 3*nside-1
l1 = 2 | l1 = 31 |
| |